IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-981-16-8656-6_9.html
   My bibliography  Save this book chapter

Research Summary of Intelligent Optimization Algorithm for Warehouse AGV Path Planning

In: Liss 2021

Author

Listed:
  • Ye Liu

    (Beijing Institute of Graphic Communication)

  • Yanping Du

    (Beijing Institute of Graphic Communication)

  • Shuihai Dou

    (Beijing Institute of Graphic Communication)

  • Lizhi Peng

    (Beijing Institute of Graphic Communication)

  • Xianyang Su

    (Beijing Institute of Graphic Communication)

Abstract

Automated Guided Vehicle (AGV) path planning is the core technology of warehouse AGV. Reasonable path planning is helpful to maximize the benefits of warehouse space and time. Scholars at home and abroad have already made extensive and in-depth research on warehouse AGV path planning, and have achieved fruitful research results. In this paper, the models and environmental modeling methods of warehouse AGV path planning are summarized. It turned out that the cell method is intuitive and easy to model, the geometric method is safe, but difficult to update, and the artificial potential field method is easy to solve, but easy to fall into local optimum. The optimization methods of genetic algorithm, ant colony algorithm and particle swarm optimization algorithm in AGV path planning are emphatically summarized. It is found that genetic algorithm is suitable for complex and highly nonlinear path planning problems, ant colony algorithm is suitable for discrete path planning problems, and particle swarm algorithm is suitable for real number path planning problems. The research summary of this paper provides reference value for the research of intelligent optimization algorithm of AGV path planning and new ideas for broadening the application field of AGV path planning.

Suggested Citation

  • Ye Liu & Yanping Du & Shuihai Dou & Lizhi Peng & Xianyang Su, 2022. "Research Summary of Intelligent Optimization Algorithm for Warehouse AGV Path Planning," Lecture Notes in Operations Research, in: Xianliang Shi & Gábor Bohács & Yixuan Ma & Daqing Gong & Xiaopu Shang (ed.), Liss 2021, pages 96-110, Springer.
  • Handle: RePEc:spr:lnopch:978-981-16-8656-6_9
    DOI: 10.1007/978-981-16-8656-6_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-981-16-8656-6_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.