IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-981-16-8656-6_48.html
   My bibliography  Save this book chapter

An Optimal Online Distributed Auction Algorithm for Multi-UAV Task Allocation

In: Liss 2021

Author

Listed:
  • Xinhang Li

    (Beijing Jiaotong University)

  • Yanan Liang

    (Beijing Jiaotong University)

Abstract

Collaborative task allocation is a key component of multi-UAV combat system in battlefield environment. The combat effect can be maximized by allocating UAV resources to corresponding targets in an optimal way. Aiming at the problem that the battlefield environment is dynamic and changeable, current online task allocation algorithms mainly consider the rapid deployment of new tasks on the basis of existing assignments, but it is difficult to ensure the maximum payoffs of re-planning results. Based on the distributed auction algorithm, this paper introduces a result update mechanism, which resets some of the original assignments and lets them participate in the auction together with the new tasks, obtaining the re-planning result with maximum payoffs. The simulation results show that compared with other online task allocation algorithms, the introduced algorithm mechanism not only meets the requirement of algorithm timeliness, but also ensures the maximum payoffs of assignments, which is more suitable for dynamic and changeable battlefield environment.

Suggested Citation

  • Xinhang Li & Yanan Liang, 2022. "An Optimal Online Distributed Auction Algorithm for Multi-UAV Task Allocation," Lecture Notes in Operations Research, in: Xianliang Shi & Gábor Bohács & Yixuan Ma & Daqing Gong & Xiaopu Shang (ed.), Liss 2021, pages 537-548, Springer.
  • Handle: RePEc:spr:lnopch:978-981-16-8656-6_48
    DOI: 10.1007/978-981-16-8656-6_48
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-981-16-8656-6_48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.