IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-981-16-8656-6_38.html
   My bibliography  Save this book chapter

Deep Belief Neural Networks for Eye Localization Based Speeded up Robust Features and Local Binary Pattern

In: Liss 2021

Author

Listed:
  • Mahmoud Y. Shams

    (Kafrelshiek University)

  • Aboul Ella Hassanien

    (Cairo University)

  • Mincong Tang

    (Beijing Jiaotong University)

Abstract

Eye localization and detection are essential in security applications and human recognition and verification. The multi-pose variations of the pupil are still the major challenge in eye detection algorithms. Furthermore, facial expression recognition related to eye detection is still dropped in the recent security applications. This paper used a speeded-up roust feature (SURF) algorithm to localize facial parts, especially the eye and pupil, quickly and easily. Moreover, we detect the boundary box of face components by initializing the eye position based on Hough circle transform (HCT) and local binary pattern (LBP). Afterward, we classify the individuals who successfully detected their eye images using the confusion matrix of two class labels based on deep belief neural networks (DBNN). Fine-tuning the hyper-parameter values of the DBNN is performed as well as a stochastic gradient descent optimizer to handle the overfitting problem of the proposed method. The proposed algorithm’s accuracy based on the combination of SURF, LBP with the DBNN classifier reached 95.54%, 94.07%, and 96.20% for the applied ORL, BioID, and CASIA-V5, respectively. The comparison of the proposed algorithm with the state-of-the-art is performed to indicate that the proposed algorithms are more reliable and superior.

Suggested Citation

  • Mahmoud Y. Shams & Aboul Ella Hassanien & Mincong Tang, 2022. "Deep Belief Neural Networks for Eye Localization Based Speeded up Robust Features and Local Binary Pattern," Lecture Notes in Operations Research, in: Xianliang Shi & Gábor Bohács & Yixuan Ma & Daqing Gong & Xiaopu Shang (ed.), Liss 2021, pages 415-430, Springer.
  • Handle: RePEc:spr:lnopch:978-981-16-8656-6_38
    DOI: 10.1007/978-981-16-8656-6_38
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-981-16-8656-6_38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.