IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-3-031-61589-4_15.html
   My bibliography  Save this book chapter

A Kernel Bayesian Data Envelopment Analysis Approach for Bias Correction of Efficiencies

In: Business Analytics and Decision Making in Practice

Author

Listed:
  • Constantinos Zacharias

    (EY, Financial Services & Risk Management)

  • Panagiotis D. Zervopoulos

    (University of Sharjah)

  • Ali Emrouznejad

    (University of Surrey)

  • Konstantinos Triantis

    (Virginia Tech)

  • Gang Cheng

    (Peking University)

Abstract

This study introduces a kernel Bayesian approach to correct the bias of data envelopment analysis (DEA) efficiency estimates. This approach yields consistent estimates for convex sets. The prior distribution of this Bayesian method is “non-informative” in a relative sense as no distributional assumptions are made, like in theoretical Bayesian approaches, and the parameters of DEA efficiency distributions are not used to obtain bias-corrected estimates, as in alternative computational or hybrid Bayesian techniques for statistical inference to efficiencies. Specifically, various kernel distributions, such as Epanechnikov, Biweight, Triweight, and Gaussian, are tested for the prior distribution. In addition, we deploy least cross validation (LCV), rule of thumb (RoT), and least-squares cross validation (LSCV) as bandwidth selection methodologies for every kernel distribution function. Bias correction draws on the ratio of a posterior truncated normal distribution, with μ and σ the respective kernel values, and the above prior kernel distributions with LCV, RoT, and LSCV as bandwidth selection mechanisms. Using scaled samples of 30, 50, 80, and 100 units, the mean square error (MSE) and mean absolute error (MAE) of this Bayesian approach’s estimates are as low as 6.45 × 10–3 and 6.4 × 10–2, respectively. Based on real-world data, we show that the new Bayesian method performs better than extant computational bias-correction techniques for DEA efficiencies. At the same time, the MSE and MAE decrease gradually as the sample size increases.

Suggested Citation

  • Constantinos Zacharias & Panagiotis D. Zervopoulos & Ali Emrouznejad & Konstantinos Triantis & Gang Cheng, 2024. "A Kernel Bayesian Data Envelopment Analysis Approach for Bias Correction of Efficiencies," Lecture Notes in Operations Research, in: Ali Emrouznejad & Panagiotis D. Zervopoulos & Ilhan Ozturk & Dima Jamali & John Rice (ed.), Business Analytics and Decision Making in Practice, chapter 0, pages 175-185, Springer.
  • Handle: RePEc:spr:lnopch:978-3-031-61589-4_15
    DOI: 10.1007/978-3-031-61589-4_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-3-031-61589-4_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.