IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-3-031-48731-6_1.html
   My bibliography  Save this book chapter

Deep Reinforcement Learning-Based Rebalancing Policies for Profit Maximization of Relay Nodes in Payment Channel Networks

In: Mathematical Research for Blockchain Economy

Author

Listed:
  • Nikolaos Papadis

    (Nokia Bell Labs)

  • Leandros Tassiulas

    (Yale University)

Abstract

Payment channel networks (PCNs) are a layer-2 blockchain scalability solution, with its main entity, the payment channel, enabling transactions between pairs of nodes “off-chain,” thus reducing the burden on the layer-1 network. Nodes with multiple channels can serve as relays for multihop payments by providing their liquidity and withholding part of the payment amount as a fee. Relay nodes might after a while end up with one or more unbalanced channels, and thus need to trigger a rebalancing operation. In this paper, we study how a relay node can maximize its profits from fees by using the rebalancing method of submarine swaps. We introduce a stochastic model to capture the dynamics of a relay node observing random transaction arrivals and performing occasional rebalancing operations, and express the system evolution as a Markov Decision Process. We formulate the problem of the maximization of the node’s fortune over time over all rebalancing policies, and approximate the optimal solution by designing a Deep Reinforcement Learning (DRL)-based rebalancing policy. We build a discrete event simulator of the system and use it to demonstrate the DRL policy’s superior performance under most conditions by conducting a comparative study of different policies and parameterizations. Our work is the first to introduce DRL for liquidity management in the complex world of PCNs.

Suggested Citation

  • Nikolaos Papadis & Leandros Tassiulas, 2023. "Deep Reinforcement Learning-Based Rebalancing Policies for Profit Maximization of Relay Nodes in Payment Channel Networks," Lecture Notes in Operations Research, in: Panos Pardalos & Ilias Kotsireas & William J. Knottenbelt & Stefanos Leonardos (ed.), Mathematical Research for Blockchain Economy, pages 1-27, Springer.
  • Handle: RePEc:spr:lnopch:978-3-031-48731-6_1
    DOI: 10.1007/978-3-031-48731-6_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-3-031-48731-6_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.