IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-3-031-24907-5_45.html
   My bibliography  Save this book chapter

Locating Relief Trains for Patient Transports in Case of Mass-Casualty Incidents

In: Operations Research Proceedings 2022

Author

Listed:
  • Florentina Hager

    (Technical University of Darmstadt)

  • Melanie Reuter-Oppermann

    (Technical University of Darmstadt)

Abstract

In case of a mass-casualty incident with several hundred or even thousands of patients, providing fast medical treatments is one of the main goals. If close-by hospitals cannot provide sufficient capacities to treat all victims, they need to be transported to more remote hospitals. In these cases, mass transportation modes such as trains or ships could assist to promote faster transportation. However, to be useful, they must arrive at the site of the incident as fast as possible. Therefore, we present a stochastic mathematical model that simultaneously determines the optimal fleet size of relief trains to be stationed as well as the optimal locations to prepare for patient transport after mass-casualty events. We test our model in a case study in the German state of Bavaria.

Suggested Citation

  • Florentina Hager & Melanie Reuter-Oppermann, 2023. "Locating Relief Trains for Patient Transports in Case of Mass-Casualty Incidents," Lecture Notes in Operations Research, in: Oliver Grothe & Stefan Nickel & Steffen Rebennack & Oliver Stein (ed.), Operations Research Proceedings 2022, chapter 0, pages 375-381, Springer.
  • Handle: RePEc:spr:lnopch:978-3-031-24907-5_45
    DOI: 10.1007/978-3-031-24907-5_45
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-3-031-24907-5_45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.