IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-3-031-24907-5_31.html
   My bibliography  Save this book chapter

Mathematical Optimization for Analyzing and Forecasting Nonlinear Network Time Series

In: Operations Research Proceedings 2022

Author

Listed:
  • Milena Petkovic

    (Zuse Institute Berlin)

  • Nazgul Zakiyeva

    (Zuse Institute Berlin)

Abstract

This work presents an innovative short to mid-term forecasting model that analyzes nonlinear complex spatial and temporal dynamics in energy networks under demand and supply balance constraints using Network Nonlinear Time Series (TS) and Mathematical Programming (MP) approach. We address three challenges simultaneously, namely, the adjacency matrix is unknown; the total amount in the network has to be balanced; dependence is unnecessarily linear. We use a nonparametric approach to handle the nonlinearity and estimate the adjacency matrix under the sparsity assumption. The estimation is conducted with the Mathematical Optimisation method. We illustrate the accuracy and effectiveness of the model on the example of the natural gas transmission network of one of the largest transmission system operators (TSOs) in Germany, Open Grid Europe. The obtained results show that, especially for shorter forecasting horizons, proposed method outperforms all considered benchmark models, improving the average nMAPE for 5.1% and average RMSE for 79.6% compared to the second-best model. The model is capable to capture the nonlinear dependencies in the complex spatial-temporal network dynamics and benefits from both sparsity assumption and the demand and supply balance constraint.

Suggested Citation

  • Milena Petkovic & Nazgul Zakiyeva, 2023. "Mathematical Optimization for Analyzing and Forecasting Nonlinear Network Time Series," Lecture Notes in Operations Research, in: Oliver Grothe & Stefan Nickel & Steffen Rebennack & Oliver Stein (ed.), Operations Research Proceedings 2022, chapter 0, pages 253-259, Springer.
  • Handle: RePEc:spr:lnopch:978-3-031-24907-5_31
    DOI: 10.1007/978-3-031-24907-5_31
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-3-031-24907-5_31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.