IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-3-031-24907-5_27.html
   My bibliography  Save this book chapter

Identifying Critical Demand Periods in Capacity Planning for Networks Including Storage

In: Operations Research Proceedings 2022

Author

Listed:
  • Andreas Bley

    (Universität Kassel)

  • Philipp Hahn

    (Universität Kassel)

Abstract

We consider a capacity planning problem for networks including storage. Given a graph and a time series of demands and supplies, we seek for integer link and storage capacities that permit a single commodity flow with valid storage in- and outtakes over all time steps. This problem arises, for example, in power systems planning, where storage can be used to buffer peaks of varying supplies and demands. For typical time series spanning a full year at hourly resolution, this leads to huge optimization models. To reduce the model size, time series aggregation is commonly used. The time horizon is sliced into fixed size periods, e.g. days or weeks, a small set of representative periods is chosen via clustering methods, and a much smaller model involving only the chosen periods is solved. Representative periods, however, typically do not contain the situations with the most extreme demands and supplies and the strongest effects on storage. In this paper, we show how to identify such critical periods using principal component analysis (PCA) and convex hull computations and we compare the quality and solution time of the reduced models to the original ones for benchmark instances derived from power systems planning.

Suggested Citation

  • Andreas Bley & Philipp Hahn, 2023. "Identifying Critical Demand Periods in Capacity Planning for Networks Including Storage," Lecture Notes in Operations Research, in: Oliver Grothe & Stefan Nickel & Steffen Rebennack & Oliver Stein (ed.), Operations Research Proceedings 2022, chapter 0, pages 221-227, Springer.
  • Handle: RePEc:spr:lnopch:978-3-031-24907-5_27
    DOI: 10.1007/978-3-031-24907-5_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-3-031-24907-5_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.