IDEAS home Printed from https://ideas.repec.org/h/spr/lnopch/978-3-031-08623-6_53.html
   My bibliography  Save this book chapter

Towards Transfer Learning for Revenue and Pricing Management

In: Operations Research Proceedings 2021

Author

Listed:
  • Alexander Kastius

    (University of Potsdam)

  • Rainer Schlosser

    (University of Potsdam)

Abstract

Reinforcement Learning (RL) has proven itself as a powerful tool to optimize pricing processes. With the support of deep non-linear function approximation tools, it can handle complex and continuous state and action spaces. This ability can leverage the utility of pricing algorithms in markets with a vast number of participants or in use cases where additional product features should be considered in the pricing system. One problem with those tools is their apparent demand for training data, which might not be available for a single market. We propose to use techniques instead, that leverage the knowledge of different problems. Several similar algorithms have been proposed in the past years to allow RL algorithms to operate efficiently on various processes simultaneously. DISTRAL continuously merges information from different decision processes towards a distilled policy and uses the joint policy to update the market-specific source policies. We will discuss the influence of such regularization mechanisms. Multi-market pricing problems are used to illustrate their impact.

Suggested Citation

  • Alexander Kastius & Rainer Schlosser, 2022. "Towards Transfer Learning for Revenue and Pricing Management," Lecture Notes in Operations Research, in: Norbert Trautmann & Mario Gnägi (ed.), Operations Research Proceedings 2021, pages 361-366, Springer.
  • Handle: RePEc:spr:lnopch:978-3-031-08623-6_53
    DOI: 10.1007/978-3-031-08623-6_53
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnopch:978-3-031-08623-6_53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.