IDEAS home Printed from https://ideas.repec.org/h/spr/lnichp/978-3-031-80122-8_10.html
   My bibliography  Save this book chapter

Automated Knowledge Extraction from IS Research Articles Combining Sentence Classification and Ontological Annotation

Author

Listed:
  • Sebastian Huettemann

    (Berlin School of Economics and Law)

Abstract

Manually analyzing large collections of research articles is a time- and resource-intensive activity, making it difficult to stay on top of the latest research findings. Limitations of automated solutions lie in limited domain knowledge and not being able to attribute extracted key terms to a focal article, related work, or background information. We aim to address this challenge by (1) developing a framework for classifying sentences in scientific publications, (2) performing several experiments comparing state-of-the-art sentence transformer algorithms with a novel few-shot learning technique and (3) automatically analyzing a corpus of articles and evaluating automated knowledge extraction capabilities. We tested our approach for combining sentence classification with ontological annotations on a manually created dataset of 1000 sentences from Information Systems (IS) articles. The results indicate a high degree of accuracy underlining the potential for novel approaches in analyzing scientific publications.

Suggested Citation

  • Sebastian Huettemann, 2025. "Automated Knowledge Extraction from IS Research Articles Combining Sentence Classification and Ontological Annotation," Lecture Notes in Information Systems and Organization,, Springer.
  • Handle: RePEc:spr:lnichp:978-3-031-80122-8_10
    DOI: 10.1007/978-3-031-80122-8_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnichp:978-3-031-80122-8_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.