IDEAS home Printed from https://ideas.repec.org/h/spr/lnichp/978-3-030-88900-5_8.html
   My bibliography  Save this book chapter

Optimizing Scatterplot-Matrices for Decision-Support:

In: Information Systems and Neuroscience

Author

Listed:
  • Lisa Perkhofer

    (University of Applied Sciences Upper Austria)

  • Peter Hofer

    (University of Applied Sciences Upper Austria)

Abstract

The scatterplot matrix is defined to be a standard method for multivariate data visualization; nonetheless, their use for decision-support in a corporate environment is scarce. Amongst others, longstanding criticism lies in the lack of empirical testing to investigate optimal design specifications as well as areas of application from a business related perspective. Thus, on the basis of an innovative approach to assess a visualization’s fitness for efficient and effective decision-making given a user’s situational cognitive load, this study investigates the usability of a scatterplot matrix while performing typical tasks associated with multidimensional datasets (correlation and distribution assessment). A laboratory experiment recording eye-tracking data investigates the design of the matrix and its influence on the decision-maker’s ability to process the presented information. Especially, the information content presented in the diagonal as well as the size of the matrix are tested and linked to the user’s individual processing capabilities. Results show that the design of the scatterplot as well as the size of the matrix influenced the decision-making greatly.

Suggested Citation

  • Lisa Perkhofer & Peter Hofer, 2021. "Optimizing Scatterplot-Matrices for Decision-Support:," Lecture Notes in Information Systems and Organization, in: Fred D. Davis & René Riedl & Jan vom Brocke & Pierre-Majorique Léger & Adriane B. Randolph & Gernot (ed.), Information Systems and Neuroscience, pages 63-76, Springer.
  • Handle: RePEc:spr:lnichp:978-3-030-88900-5_8
    DOI: 10.1007/978-3-030-88900-5_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnichp:978-3-030-88900-5_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.