IDEAS home Printed from https://ideas.repec.org/h/spr/lnichp/978-3-030-86797-3_15.html
   My bibliography  Save this book chapter

Leveraging Text Classification by Co-training with Bidirectional Language Models – A Novel Hybrid Approach and Its Application for a German Bank

In: Innovation Through Information Systems

Author

Listed:
  • Roland Graef

    (University of Ulm)

Abstract

Labeling training data constitutes the largest bottleneck for machine learning projects. In particular, text classification via machine learning is widely applied and investigated. Hence, companies have to label a decent amount of texts manually in order to build appropriate text classifiers. Obviously, labeling texts manually is associated with time and expenses. Against this background, research started to develop approaches exploiting the knowledge contained in unlabeled texts by learning sophisticated text representations or labeling some of the texts in an automated manner. However, there is still a lack of integrated approaches, considering both types of approaches to further reduce time and expenses for labeling texts. To address this problem, we propose a new hybrid text classification approach combining recent text representations and automated labeling approaches in an integrated perspective. We demonstrate and evaluate our approach using the case of a German bank where the approach could be applied successfully.

Suggested Citation

  • Roland Graef, 2021. "Leveraging Text Classification by Co-training with Bidirectional Language Models – A Novel Hybrid Approach and Its Application for a German Bank," Lecture Notes in Information Systems and Organization, in: Frederik Ahlemann & Reinhard Schütte & Stefan Stieglitz (ed.), Innovation Through Information Systems, pages 216-231, Springer.
  • Handle: RePEc:spr:lnichp:978-3-030-86797-3_15
    DOI: 10.1007/978-3-030-86797-3_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnichp:978-3-030-86797-3_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.