IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-642-31301-1_13.html
   My bibliography  Save this book chapter

Heterogeneous Learning in Bertrand Competition with Differentiated Goods

In: Managing Market Complexity

Author

Listed:
  • Dávid Kopányi

    (CeNDEF, University of Amsterdam)

Abstract

This paper stresses that the coexistence of different learning methods can have a substantial effect on the convergence properties of these methods. We consider a Bertrand oligopoly with differentiated goods in which firms either use least squares learning or gradient learning for determining the price for a given period. These methods are well-established in oligopoly models but, up till now, are used mainly in homogeneous setups. We illustrate that the stability of gradient learning depends on the distribution of learning methods over firms: as the number of gradient learners increases, the method may lose stability and become less profitable. We introduce competition between the learning methods and show that a cyclical switching between the methods may occur.

Suggested Citation

  • Dávid Kopányi, 2012. "Heterogeneous Learning in Bertrand Competition with Differentiated Goods," Lecture Notes in Economics and Mathematical Systems, in: Andrea Teglio & Simone Alfarano & Eva Camacho-Cuena & Miguel Ginés-Vilar (ed.), Managing Market Complexity, edition 127, chapter 0, pages 155-166, Springer.
  • Handle: RePEc:spr:lnechp:978-3-642-31301-1_13
    DOI: 10.1007/978-3-642-31301-1_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-642-31301-1_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.