IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-642-13947-5_8.html
   My bibliography  Save this book chapter

Simulations on Correlated Behavior and Social Learning

In: Progress in Artificial Economics

Author

Listed:
  • Andrea Blasco

    (Università di Bologna)

  • Paolo Pin

    (Università degli Studi di Siena)

Abstract

We consider a population of agents that can choose between two risky technologies: an old one for which they know the expected outcome, and a new one for which they have only a prior. We confront different environments. In the benchmark case agents are isolated and can perform costly experiments to infer the quality of the new technology. In the other cases agents are settled in a network and can observe the outcomes of neighbors. We analyze long–run efficiency of the models. We observe that in expectations the quality of the new technology may be overestimated when there is a network spread of information. This is due to a herding behavior that is efficient only when the new technology is really better than the old one. We also observe that between different network structures there is not a clear dominance.

Suggested Citation

  • Andrea Blasco & Paolo Pin, 2010. "Simulations on Correlated Behavior and Social Learning," Lecture Notes in Economics and Mathematical Systems, in: Marco Li Calzi & Lucia Milone & Paolo Pellizzari (ed.), Progress in Artificial Economics, pages 89-100, Springer.
  • Handle: RePEc:spr:lnechp:978-3-642-13947-5_8
    DOI: 10.1007/978-3-642-13947-5_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-642-13947-5_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.