IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-642-00495-7_7.html
   My bibliography  Save this book chapter

Introduction

In: Forecasting and Hedging in the Foreign Exchange Markets

Author

Listed:
  • Christian Ullrich

    (BMW AG)

Abstract

Over the past several decades, researchers and practitioners have used various forecasting methods to study foreign exchange market time series events, thus implicitly challenging the concepts of informational and speculative efficiency. These forecasting methods largely stemmed from the fields of financial econometrics and machine learning. For example, the 1960s saw the development of a number of large macroeconometric models purporting to describe the economy using hundreds of macroeconomic variables and equations. It was found that although complicated linear models can track the data very well over the historical period, they often perform poorly for out-of-sample forecasting [287]. This has often been interpreted that the explanatory power of exchange rate models is extremely poor. Nelson [310] discovered that univariate autoregressive moving average (ARMA) models with small values for p and q produce more robust results than the big models. Box [58] developed the autoregressive integrated moving average (ARIMA) methodology for forecasting time series events. The basic idea of ARIMA modeling approaches is the assumption of linearity among the variables. However, there are many time series events for which the assumption of linearity may not hold. Clearly, ARIMA models cannot be effectively used to capture and explain nonlinear relationships. When ARIMA models are applied to processes that are nonlinear, forecasting errors often increase greatly as the forecasting horizon becomes longer. To improve forecasting nonlinear time series events, researchers have developed alternative modeling approaches. These include nonlinear regression models, the bilinear model [171], the threshold autoregressive model [392], and the autoregressive heteroskedastic model by [115]. Although these methods have shown improvement over linear models for some specific cases, they tend to be application specific, lack generality, and are often harder to implement [424].

Suggested Citation

  • Christian Ullrich, 2009. "Introduction," Lecture Notes in Economics and Mathematical Systems, in: Forecasting and Hedging in the Foreign Exchange Markets, chapter 7, pages 43-45, Springer.
  • Handle: RePEc:spr:lnechp:978-3-642-00495-7_7
    DOI: 10.1007/978-3-642-00495-7_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-642-00495-7_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.