IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-642-00495-7_16.html
   My bibliography  Save this book chapter

Exchange Rate Forecasting with Support Vector Machines

In: Forecasting and Hedging in the Foreign Exchange Markets

Author

Listed:
  • Christian Ullrich

    (BMW AG)

Abstract

Part II examines and analyzes the general ability of support vector machine (SVM) models to correctly predict and trade daily EUR/GBP, EUR/JPY, and EUR/USD exchange rate return directions. When computers are applied to solve a practical problem, it is usually the case that the method of deriving the required output from a set of inputs can be described explicitly. As computers are applied to solve more complex problems, however, situations can arise in which there is no known method for computing the desired output from a set of inputs, or where that computation may be very expensive. Forecasting financial time series events such as daily exchange rate directions, for instance, is a problem that is very relevant for the financial community and known to be very difficult in practice. We formally represent this problem as a classification task which is described by the linear separability problem. In the special case of finding whether two sets of points (namely exchange rate ups and downs) in general space can be separated, the linear separability problem becomes the binary classification problem whose most general form, the case of whether two sets of points in general space can be separated by k hyperplanes, is known to be NP-complete. It is generally believed that NP-complete problems cannot be solved efficiently.

Suggested Citation

  • Christian Ullrich, 2009. "Exchange Rate Forecasting with Support Vector Machines," Lecture Notes in Economics and Mathematical Systems, in: Forecasting and Hedging in the Foreign Exchange Markets, chapter 16, pages 183-184, Springer.
  • Handle: RePEc:spr:lnechp:978-3-642-00495-7_16
    DOI: 10.1007/978-3-642-00495-7_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-642-00495-7_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.