IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-642-00495-7_13.html
   My bibliography  Save this book chapter

Problem Statement and Computational Complexity

In: Forecasting and Hedging in the Foreign Exchange Markets

Author

Listed:
  • Christian Ullrich

    (BMW AG)

Abstract

In order to find possibly optimal combinations between spot, forward, and European straddle option contracts, it is proposed to embed the three-moment utility function as formulated in Definition 12.9 in a single-period stochastic combinatorial optimization problem (SCOP) framework with linear constraints. Decisions are made solely at t = 0 and cannot be revised in subsequent periods. The decision horizon is finite and set to T = 1. Due to the current popularity of multiperiod financial models, a single-period description of the problem might be considered as disputable. In a dynamic modeling context, decisions are optimized in stages, because uncertain information is not revealed all at once. In our context this would require building an integrated dynamic simulation model that additionally describes the future development of the forward rates as well as the option premiums over the next 12 months in a stochastic manner. Obviously, such an approach would be much more difficult to model than our single-factor approach, contain significantly higher model risk (three risk factors plus interactions), and would require more computational resources. It is therefore doubtful if such a model would indeed be advantageous, especially if we consider the underlying decision context. In practice, firms’ currency hedging decisions are hardly enforced by speculative behavior towards future price developments of hedging vehicles. Instead, they rather concentrate on reward/risk estimates that depend solely on the underlying risk factor, i.e., the exchange rate in our case. Any further assumptions or risks are usually avoided. Hence, although a multiperiod decomposition of reward and risk poses an interesting theoretical problem, we argue that it is less relevant in practice. Therefore, only forward rates and option prices as known in t = 0 are relevant.

Suggested Citation

  • Christian Ullrich, 2009. "Problem Statement and Computational Complexity," Lecture Notes in Economics and Mathematical Systems, in: Forecasting and Hedging in the Foreign Exchange Markets, chapter 13, pages 133-140, Springer.
  • Handle: RePEc:spr:lnechp:978-3-642-00495-7_13
    DOI: 10.1007/978-3-642-00495-7_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-642-00495-7_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.