IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-642-00331-8_3.html
   My bibliography  Save this book chapter

Fractional Binomial Trees

In: Option Pricing in Fractional Brownian Markets

Author

Listed:
  • Stefan Rostek

    (University of Tübingen)

Abstract

Binomial trees are discrete approximations of stochastic processes where at every discrete point in time the process has two possibilities: it either moves upwards or descends to a certain extent. Each alternative occurs with a certain probability adding up to 1. Consequently, two factors determine the characteristics of the resulting discrete process: The probability distributions of the single steps as well as the extent of the two possible shifts at each step. The binomial tree approach for classical Brownian motion is well-developed and leads to intuitive insights concerning the understanding of Brownian motion as the limit of an uncorrelated random walk. Cox et al. (1979) extended the very setting and defined a binomial stock price model converging weakly to the lognormal diffusion of geometric Brownian motion. Other processes of several important continuous time models in finance have been modeled successfully in a similar fashion (see e.g. Nelson and Ramaswamy (1990)). Hence, one might expect that a comparable approach for fractional Brownian motion should also be possible. However, as we will see in this chapter, things are a little bit harder to work out. This is mainly due to the property of serial correlation

Suggested Citation

  • Stefan Rostek, 2009. "Fractional Binomial Trees," Lecture Notes in Economics and Mathematical Systems, in: Option Pricing in Fractional Brownian Markets, chapter 3, pages 33-55, Springer.
  • Handle: RePEc:spr:lnechp:978-3-642-00331-8_3
    DOI: 10.1007/978-3-642-00331-8_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-642-00331-8_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.