IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-540-28444-4_3.html
   My bibliography  Save this book chapter

A Genetic Algorithms Approach: Social Aggregation and Learning with Heterogeneous Agents

In: New Tools of Economic Dynamics

Author

Listed:
  • Davide Fiaschi

    (University of Pisa)

  • Pier Mario Pacini

    (University of Pisa)

Abstract

Summary We analyze an economy in which increasing returns to scale incentivate social aggregation in a population of heterogeneous boundedly rational agents; however these incentives are limited by the presence of imperfect information on others’ actions. We show by simulations that the equilibrium coalitional structure strongly depends on agents’ initial beliefs and on the characteristics of the individual learning process that is modeled by means of genetic algorithms. The most efficient coalition structure is reached starting from a very limited set of initial beliefs. Furthermore we find that (a) the overall efficiency is an increasing function of agents’ computational abilities; (b) an increase in the speed of the learning process can have ambiguous effects; (c) imitation can play a role only when computational abilities are limited.

Suggested Citation

  • Davide Fiaschi & Pier Mario Pacini, 2005. "A Genetic Algorithms Approach: Social Aggregation and Learning with Heterogeneous Agents," Lecture Notes in Economics and Mathematical Systems, in: Jacek Leskow & Lionello F. Punzo & Martín Puchet Anyul (ed.), New Tools of Economic Dynamics, chapter 3, pages 43-59, Springer.
  • Handle: RePEc:spr:lnechp:978-3-540-28444-4_3
    DOI: 10.1007/3-540-28444-3_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-540-28444-4_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.