IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-319-75169-6_3.html
   My bibliography  Save this book chapter

Discrete Filippov-Type Stability for One-Sided Lipschitzian Difference Inclusions

In: Control Systems and Mathematical Methods in Economics

Author

Listed:
  • Robert Baier

    (University of Bayreuth)

  • Elza Farkhi

    (Tel Aviv University)

Abstract

We state and prove Filippov-type stability theorems for discrete difference inclusions obtained by the Euler discretization of a differential inclusion with perturbations in the set of initial points, in the right-hand side and in the state variable. We study the cases in which the right-hand side of the inclusion is not necessarily Lipschitz, but satisfies a weaker one-sided Lipschitz (OSL) or strengthened one-sided Lipschitz (SOSL) condition. The obtained estimates imply stability of the discrete solutions for infinite number of fixed time steps if the OSL constant is negative and the perturbations are bounded in certain norms. We show a better order of stability for SOSL right-hand sides and apply our theorems to estimate the distance from the solutions of other difference methods, as for the implicit Euler scheme to the set of solutions of the Euler scheme. We also prove a discrete relaxation stability theorem for the considered difference inclusion, which also extends a theorem of Grammel (Set-Valued Anal. 11(1):1–8, 2003) from the class of Lipschitz maps to the wider class of OSL ones.

Suggested Citation

  • Robert Baier & Elza Farkhi, 2018. "Discrete Filippov-Type Stability for One-Sided Lipschitzian Difference Inclusions," Lecture Notes in Economics and Mathematical Systems, in: Gustav Feichtinger & Raimund M. Kovacevic & Gernot Tragler (ed.), Control Systems and Mathematical Methods in Economics, pages 27-55, Springer.
  • Handle: RePEc:spr:lnechp:978-3-319-75169-6_3
    DOI: 10.1007/978-3-319-75169-6_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-319-75169-6_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.