IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-99304-1_5.html
   My bibliography  Save this book chapter

Robust Ranking of Universities Evaluated by Hierarchical and Interacting Criteria

In: Multiple Criteria Decision Making and Aiding

Author

Listed:
  • Salvatore Corrente

    (University of Catania)

  • Salvatore Greco

    (University of Catania
    Centre of Operations Research and Logistics (CORL))

  • Roman Słowiński

    (Poznań University of Technology
    Polish Academy of Sciences)

Abstract

In this chapter, we present a methodology of decision aiding that helps to build a ranking of a finite set of alternatives evaluated by a family of hierarchically structured criteria. The presentation has a tutorial character, and takes as an example the ranking of universities. Each university is generally evaluated on several aspects, such as quality of faculty and research output. Moreover, their performance on these macro-criteria can be further detailed by evaluation on some subcriteria. To take into account the hierarchical structure of criteria presented as a tree, the multiple criteria hierarchy process will be applied. The aggregation of the university performances will be done by the Choquet integral preference model that is able to take into account the possible negative and positive interactions between the criteria at hand. On the basis of an indirect preference information supplied by the decision maker in terms of pairwise comparisons of some universities, or comparison of some criteria in terms of their importance and their interaction, the robust ordinal regression and the stochastic multicriteria acceptability analysis will be used. They will provide the decision maker some robust recommendations presented in the form of necessary and possible preference relations between universities, and in the form of a distribution of possible rank positions got by each of them, taking into account all preference models compatible with the available preference information. The methodology will be presented step by step on a sample of some European universities.

Suggested Citation

  • Salvatore Corrente & Salvatore Greco & Roman Słowiński, 2019. "Robust Ranking of Universities Evaluated by Hierarchical and Interacting Criteria," International Series in Operations Research & Management Science, in: Sandra Huber & Martin Josef Geiger & Adiel Teixeira de Almeida (ed.), Multiple Criteria Decision Making and Aiding, pages 145-192, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-99304-1_5
    DOI: 10.1007/978-3-319-99304-1_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "The Ordinal Input for Cardinal Output Approach of Non-compensatory Composite Indicators: The PROMETHEE Scoring Method," MPRA Paper 95816, University Library of Munich, Germany.
    2. Corrente, S. & Figueira, J.R. & Greco, S., 2021. "Pairwise comparison tables within the deck of cards method in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 291(2), pages 738-756.
    3. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    4. Maryam Moshtagh & Tahereh Jowkar & Maryam Yaghtin & Hajar Sotudeh, 2023. "The moderating effect of altmetrics on the correlations between single and multi-faceted university ranking systems: the case of THE and QS vs. Nature Index and Leiden," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 761-781, January.
    5. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2021. "The ordinal input for cardinal output approach of non-compensatory composite indicators: the PROMETHEE scoring method," European Journal of Operational Research, Elsevier, vol. 288(1), pages 225-246.
    6. Csató, László & Tóth, Csaba, 2020. "University rankings from the revealed preferences of the applicants," European Journal of Operational Research, Elsevier, vol. 286(1), pages 309-320.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-99304-1_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.