Author
Listed:
- Andrea Raith
(University of Auckland)
- Paul Rouse
(University of Auckland)
- Lawrence M. Seiford
(University of Michigan)
Abstract
Data Envelopment Analysis (DEA) is a non-parametric, optimisation-based benchmarking technique first introduced by Charnes et al. (European Journal of Operational Research, 2(6), pp. 429–444, 1978), later extended by Banker et al. (Management Science 30(9), pp. 1078–1092, 1984), with many variations of DEA models proposed since. DEA measures the production efficiency of a so-called Decision Making Unit (DMU) which consumes inputs to produce outputs. DEA is a particularly useful tool when there are multiple measures to be analysed in terms of DMU (or organisation) performance, allowing it to benchmark and identify comparable peers. DEA can incorporate different measures of multi-dimensional activities thus allowing for DMU complexity and is particularly useful for more ingrained analyses when investigating the effects of contextual or environmental factors on organisations’ performance. DEA has been applied in numerous areas including banking, education, health, transport, justice, retail stores, auditing, fighter jet design, research and development to name a few. DEA is based around a production model which assesses the efficiency of DMUs in turning inputs into outputs. This is done by comparing units with each other to identify the most efficient DMUs that define a frontier of best performance, which is used to measure the performance of non-efficient DMUs. This efficient frontier represents “achieved best performance” based on actual outputs produced and inputs consumed and thus provides a useful practical reference set for benchmarking and performance improvement. There are very few assumptions required in DEA and its non-parametric form avoids the need to consider alternative distribution properties. In this chapter we first describe the case of a Post and Banking Business, and then introduce DEA in the context of our case. Different DEA models and additional features are discussed. We give a brief outline of an open-source software tool for DEA and finally apply three different DEA models to the case study and discuss the results. The Learning Outcomes of This Chapter Are: Develop an intuitive understanding of DEA Understand basic linear programming models for DEA Be aware of common DEA modelling techniques Be able to conduct a DEA analysis supported by pyDEA software Be able to interpret the DEA results and explain them to a non-technical audience
Suggested Citation
Andrea Raith & Paul Rouse & Lawrence M. Seiford, 2019.
"Benchmarking Using Data Envelopment Analysis: Application to Stores of a Post and Banking Business,"
International Series in Operations Research & Management Science, in: Sandra Huber & Martin Josef Geiger & Adiel Teixeira de Almeida (ed.), Multiple Criteria Decision Making and Aiding, pages 1-39,
Springer.
Handle:
RePEc:spr:isochp:978-3-319-99304-1_1
DOI: 10.1007/978-3-319-99304-1_1
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Raith, Andrea & Ehrgott, Matthias & Fauzi, Fariza & Lin, Kuan-Min & Macann, Andrew & Rouse, Paul & Simpson, John, 2022.
"Integrating Data Envelopment Analysis into radiotherapy treatment planning for head and neck cancer patients,"
European Journal of Operational Research, Elsevier, vol. 296(1), pages 289-303.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-99304-1_1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.