IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-78242-3_4.html
   My bibliography  Save this book chapter

Descriptive Analytics for Occupational Health: Is Benzene Metabolism in Exposed Workers More Efficient at Very Low Concentrations?

In: Causal Analytics for Applied Risk Analysis

Author

Listed:
  • Louis Anthony Cox Jr.

    (Cox Associates)

  • Douglas A. Popken

    (Cox Associates)

  • Richard X. Sun

    (Cox Associates)

Abstract

The occupational risks to workers from noxious substances inhaled in air depend on the concentrations inhaled and on what happen to the inhaled substances—for example, whether they are swiftly detoxified and eliminated from the body without doing harm, or whether they are metabolized to form toxic concentrations of metabolites in target tissues. Descriptive analytics applied to data on inhaled concentrations and metabolites formed can be used to clarify how efficiently the body produces toxic metabolites at low exposure concentrations. This chapter applies descriptive analytics methods introduced in Chaps. 1 – 3 , including interaction plots, nonparametric regression, CART trees, and Bayesian networks, to data on benzene metabolites in Chinese factory workers in an effort to resolve a recent puzzle in the literature on low dose benzene toxicology. For readers who do not care to pursue this topic further, we recommend quickly examining the figures to see how plots and visualizations of patterns in the data can be displayed and used to gain insight into the dependencies among variables.

Suggested Citation

  • Louis Anthony Cox Jr. & Douglas A. Popken & Richard X. Sun, 2018. "Descriptive Analytics for Occupational Health: Is Benzene Metabolism in Exposed Workers More Efficient at Very Low Concentrations?," International Series in Operations Research & Management Science, in: Causal Analytics for Applied Risk Analysis, chapter 0, pages 285-311, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-78242-3_4
    DOI: 10.1007/978-3-319-78242-3_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-78242-3_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.