IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-65052-4_7.html
   My bibliography  Save this book chapter

A Methodology for Constructing Subjective Probability Distributions with Data

In: Elicitation

Author

Listed:
  • John Quigley

    (University of Strathclyde)

  • Lesley Walls

    (University of Strathclyde)

Abstract

Our methodology is based on the premise that expertise does not reside in the stochastic characterisation of the unknown quantity of interest, but rather upon other features of the problem to which an expert can relate her experience. By mapping the quantity of interest to an expert’s experience we can use available empirical data about associated events to support the quantification of uncertainty. Our rationale contrasts with other approaches to elicit subjective probability which ask an expert to map, according to her belief, the outcome of an unknown quantity of interest to the outcome of a lottery for which the randomness is understood and quantifiable. Typically, such a mapping represents the indifference of an expert on making a bet between the quantity of interest and the outcome of the lottery. Instead, we propose to construct a prior distribution with empirical data that is consistent with the subjective judgement of an expert. We develop a general methodology, grounded in the theory of empirical Bayes inference. We motivate the need for such an approach and illustrate its application through industry examples. We articulate our general steps and show how these translate to selected practical contexts. We examine the benefits, as well as the limitations, of our proposed methodology to indicate when it might, or might not be, appropriate.

Suggested Citation

  • John Quigley & Lesley Walls, 2018. "A Methodology for Constructing Subjective Probability Distributions with Data," International Series in Operations Research & Management Science, in: Luis C. Dias & Alec Morton & John Quigley (ed.), Elicitation, chapter 0, pages 141-170, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-65052-4_7
    DOI: 10.1007/978-3-319-65052-4_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Schwarzenegger & John Quigley & Lesley Walls, 2023. "Is eliciting dependency worth the effort? A study for the multivariate Poisson-Gamma probability model," Journal of Risk and Reliability, , vol. 237(5), pages 858-867, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-65052-4_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.