IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-18087-8_5.html
   My bibliography  Save this book chapter

Kriging Metamodels and Their Designs

In: Design and Analysis of Simulation Experiments

Author

Listed:
  • Jack P. C. Kleijnen

    (Tilburg University)

Abstract

This chapter is organized as follows. Section 5.1 introduces Kriging, which is also called Gaussian process (GP) or spatial correlation modeling. Section 5.2 details so-called ordinary Kriging (OK), including the basic Kriging assumptions and formulas assuming deterministic simulation. Section 5.3 discusses parametric bootstrapping and conditional simulation for estimating the variance of the OK predictor. Section 5.4 discusses universal Kriging (UK) in deterministic simulation. Section 5.5 surveys designs for selecting the input combinations that gives input/output data to which Kriging metamodels can be fitted; this section focuses on Latin hypercube sampling (LHS) and customized sequential designs. Section 5.6 presents stochastic Kriging (SK) for random simulations. Section 5.7 discusses bootstrapping with acceptance/rejection for obtaining Kriging predictors that are monotonic functions of their inputs. Section 5.8 discusses sensitivity analysis of Kriging models through functional analysis of variance (FANOVA) using Sobol’s indexes. Section 5.9 discusses risk analysis (RA) or uncertainty analysis (UA). Section 5.10 discusses several remaining issues. Section 5.11 summarizes the major conclusions of this chapter, and suggests topics for future research. The chapter ends with Solutions of exercises, and a long list of references.

Suggested Citation

  • Jack P. C. Kleijnen, 2015. "Kriging Metamodels and Their Designs," International Series in Operations Research & Management Science, in: Design and Analysis of Simulation Experiments, edition 2, chapter 5, pages 179-239, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-18087-8_5
    DOI: 10.1007/978-3-319-18087-8_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Pedrielli & K. Selcuk Candan & Xilun Chen & Logan Mathesen & Alireza Inanalouganji & Jie Xu & Chun-Hung Chen & Loo Hay Lee, 2019. "Generalized Ordinal Learning Framework (GOLF) for Decision Making with Future Simulated Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-35, December.
    2. Tang, Xinzi & Wang, Zhe & Xiao, Peng & Peng, Ruitao & Liu, Xiongwei, 2020. "Uncertainty quantification based optimization of centrifugal compressor impeller for aerodynamic robustness under stochastic operational conditions," Energy, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-18087-8_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.