IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-75162-3_2.html
   My bibliography  Save this book chapter

Acceleration of Large-Scale DEA Computations Using Random Forest Classification

In: Data-Enabled Analytics

Author

Listed:
  • Anyu Yu

    (Zhejiang Gongshang University)

  • Yu Shi

    (Worcester Polytechnic Institute)

  • Joe Zhu

    (Worcester Polytechnic Institute)

Abstract

With the prevalence of big data, traditional data envelopment analysis (DEA) faces the challenge of handling large-scale computations. The DEA computation time can increase significantly as the number of decision-making units grows. In this study, we propose a novel approach to accelerate DEA computations involving voluminous data. The proposed method uses random forest classification to predict and search for the best-practice DMUs within the large-scale observations. Since best-practice DMUs are always of a smaller quantity, and they can determine the efficiency scores of all the remaining DMUs, identifying best-practice DMUs first reduces the programming size and the consequent computation time of the DEA model. The proposed method is termed as the DEA-RF method, which combines DEA and machine learning methods to reduce computational cost. Next, we test the effectiveness of the proposed method using numerical cases involving large-scale data. After computing the DEA scores of the DMUs in both the observed and simulated samples, we find that the proposed DEA-RF method can decrease computation time significantly, while ensuring an acceptable level of accuracy. Additionally, the larger the sample size is, the more time the model can save. The proposed DEA-RF method proves to be an effective solution to the long computation time problem of DEA models under big data contexts.

Suggested Citation

  • Anyu Yu & Yu Shi & Joe Zhu, 2021. "Acceleration of Large-Scale DEA Computations Using Random Forest Classification," International Series in Operations Research & Management Science, in: Joe Zhu & Vincent Charles (ed.), Data-Enabled Analytics, pages 31-49, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-75162-3_2
    DOI: 10.1007/978-3-030-75162-3_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-75162-3_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.