IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-70478-0_6.html
   My bibliography  Save this book chapter

Biclustering Analysis of Countries Using COVID-19 Epidemiological Data

In: Internet of Things

Author

Listed:
  • S. Dhamodharavadhani

    (Periyar University)

  • R. Rathipriya

    (Periyar University)

Abstract

In this work, COVID-19 data were analyzed using the biclustering approach to gain insights such as which group of countries have similar epidemic trajectory patterns over the subset of COVID-19 pandemic outburst days (called bicluster). Countries within these groups (biclusters) are all in the same phase but with a slightly different trajectory. An approach based on the Greedy Two-Way KMeans biclustering algorithm is proposed to analyze COVID-19 epidemiological data, which identifies subgroups of countries that show a similar epidemic trajectory patterns over a specific period of time. To the best of authors’ knowledge, this is the first time that the biclustering approach has been applied to analyze COVID-19 data. In fact, these COVID-19 epidemiological data is not a real count because not all data can be tracked properly and other practical difficulties in collecting the data. Even in developed countries, it has huge practical problems. Therefore, if we can use the IoT-based COVID-19 monitoring system to detect the origin of the COVID-19 outbreak, we can identify the real situation in each country. Results confirm that the proposed approach can alert and helps the government authorities and healthcare professionals to know what to anticipate and which measures to implement to decelerate the COVID-19 spread.

Suggested Citation

  • S. Dhamodharavadhani & R. Rathipriya, 2021. "Biclustering Analysis of Countries Using COVID-19 Epidemiological Data," International Series in Operations Research & Management Science, in: Fausto Pedro García Márquez & Benjamin Lev (ed.), Internet of Things, chapter 0, pages 93-114, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-70478-0_6
    DOI: 10.1007/978-3-030-70478-0_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-70478-0_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.