IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-70281-6_5.html
   My bibliography  Save this book chapter

Mathematical Model of Particle Swarm Optimization: Numerical Optimization Problems

In: Applying Particle Swarm Optimization

Author

Listed:
  • Ashwin A. Kadkol

    (General Electric Research)

Abstract

The Particle Swarm Optimization (PSO) algorithm was put forth by Kennedy and Eberhart in the year 1995. It is widely known for the ease with which it can be implemented and its simple approach. It is a multi-agent parallel search metaheuristic technique aimed at global optimization for numerical optimization problems. It has roots in artificial life techniques like swarm intelligence, fish schooling, etc. This chapter aims to introduce the mathematical bases for the algorithm and illustrates a few pictorial aids to understand the technique better. It is intended to serve as an introduction to spark the interest of the reader. Readers wishing to learn more about the applications of PSO and its variants to multi-objective, constrained, dynamic optimization problems and other advanced topics are recommended to consider the various references at the end of the chapter.

Suggested Citation

  • Ashwin A. Kadkol, 2021. "Mathematical Model of Particle Swarm Optimization: Numerical Optimization Problems," International Series in Operations Research & Management Science, in: Burcu Adıgüzel Mercangöz (ed.), Applying Particle Swarm Optimization, edition 1, chapter 0, pages 73-95, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-70281-6_5
    DOI: 10.1007/978-3-030-70281-6_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-70281-6_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.