IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-70281-6_4.html
   My bibliography  Save this book chapter

A Comparative Study on PSO with Other Metaheuristic Methods

In: Applying Particle Swarm Optimization

Author

Listed:
  • Serhat Yarat

    (Istanbul University-Cerrahpasa)

  • Sibel Senan

    (Istanbul University-Cerrahpasa)

  • Zeynep Orman

    (Istanbul University-Cerrahpasa)

Abstract

The research and development of metaheuristic methods are critical issues in computer science. In the past decade, metaheuristic algorithms have been used in many engineering applications such as optimization of engineering problems, telecommunications, information security, and image processing. Many metaheuristic algorithms such as particle swarm optimization (PSO), ant colony optimization (ACO), and genetic algorithm (GA) are recently becoming very popular. There are many studies conducted in the literature on the comparison of PSO with other metaheuristic algorithms. In this chapter, various studies carried out between the years of 2010 and 2020 about the comparison of PSO with the other metaheuristic algorithms will be examined. The metaheuristic algorithms to be considered are simulated annealing (SA), genetic algorithm (GA), differential evolution (DE), ant colony optimization (ACO), artificial bee colony (ABC) algorithm, particle swarm optimization (PSO), tabu search (TS), harmony search (HS), firefly algorithm (FF), cuckoo search (CS), bat-inspired algorithm (BA), water wave optimization (WWO), clonal selection algorithm (CLONALG), chemical reaction optimization (CRO), sine cosine algorithm (SCA), glowworm swarm optimization (GSO), and grey wolf optimizer (GWO). This study aims to evaluate and analyze the covered papers according to several criteria such as (a) rates of studies according to publishing years, (b) the metaheuristic algorithms that are compared to PSO, (c) performance evaluation of compared algorithms, (d) the metaheuristic algorithms with their inspirational approaches and their initial proposed studies and years, (e) the field of subjects where the algorithms are applied in the reviewed studies, and (f) used databases in the examined studies. This study is a comprehensive literature review of the comparison of PSO with the most popular metaheuristic algorithms. The intention of this review is to be useful for researchers who want to conduct a survey on this area of the subject as this chapter will cover the essential and helpful analysis of the related research.

Suggested Citation

  • Serhat Yarat & Sibel Senan & Zeynep Orman, 2021. "A Comparative Study on PSO with Other Metaheuristic Methods," International Series in Operations Research & Management Science, in: Burcu Adıgüzel Mercangöz (ed.), Applying Particle Swarm Optimization, edition 1, chapter 0, pages 49-72, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-70281-6_4
    DOI: 10.1007/978-3-030-70281-6_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    2. Ramdhan Halid Siregar & Yuwaldi Away & Tarmizi & Akhyar, 2023. "Minimizing Power Losses for Distributed Generation (DG) Placements by Considering Voltage Profiles on Distribution Lines for Different Loads Using Genetic Algorithm Methods," Energies, MDPI, vol. 16(14), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-70281-6_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.