IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-43384-0_4.html
   My bibliography  Save this book chapter

Identification of Congestion in DEA

In: Data Science and Productivity Analytics

Author

Listed:
  • Mahmood Mehdiloo

    (University of Mohaghegh Ardabili)

  • Biresh K. Sahoo

    (Xavier University Bhubaneswar)

  • Joe Zhu

    (Worcester Polytechnic Institute)

Abstract

Productivity is a common descriptive measure for characterizing the resource-utilization performance of a production unit, or decision making unit (DMU). The challenge of improving productivity is closely related to a particular form of congestion, which reflects waste (overuse) of input resources at the production unit level. Specifically, the productivity of a production unit can be improved not only by reducing some of its inputs but also simultaneously by increasing some of its outputs, when such input congestion is present. There is thus a need first for identifying the presence of congestion, and then for developing congestion-treatment strategies to enhance productivity by reducing the input wastes and the output shortfalls associated with such congestion. Data envelopment analysis (DEA) has been considered a very effective method in evaluating input congestion. Because the assumption of strong input disposability precludes congestion, it should not be incorporated into the axiomatic modeling of the true technology involving congestion. Given this fact, we first develop a production technology in this contribution by imposing no input disposability assumption. Then we define both weak and strong forms of congestion based on this technology. Although our definitions are made initially for the output-efficient DMUs, they are well extended in the sequel for the output-inefficient DMUs. We also propose in this contribution a method for identifying congestion. The essential tool for devising this method is the technique of finding a maximal element of a non-negative polyhedral set. To our knowledge, our method is the only reliable method for precisely detecting both weak and strong forms of congestion. This method is computationally more efficient than the other congestion-identification methods developed in the literature. This is due to the fact that, unlike the others, our method involves solving a single linear program. Unlike the other methods, the proposed method also deals effectively with the presence of negative data, and with the occurrence of multiple projections for the output-inefficient DMUs. Based on our theoretical results, three computational algorithms are developed for testing the congestion of any finite-size sample of observed DMUs. The superiority of these algorithms over the other congestion-identification methods is demonstrated using four numerical examples, one of which is newly introduced in this contribution.

Suggested Citation

  • Mahmood Mehdiloo & Biresh K. Sahoo & Joe Zhu, 2020. "Identification of Congestion in DEA," International Series in Operations Research & Management Science, in: Vincent Charles & Juan Aparicio & Joe Zhu (ed.), Data Science and Productivity Analytics, chapter 0, pages 83-119, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-43384-0_4
    DOI: 10.1007/978-3-030-43384-0_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-43384-0_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.