IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-43384-0_1.html
   My bibliography  Save this book chapter

Data Envelopment Analysis and Big Data: Revisit with a Faster Method

In: Data Science and Productivity Analytics

Author

Listed:
  • Dariush Khezrimotlagh

    (Pennsylvania State University - Harrisburg)

  • Joe Zhu

    (Worcester Polytechnic Institute)

Abstract

Khezrimotlagh et al. (Eur J Oper Res 274(3):1047–1054, 2019) propose a new framework to deal with large-scale data envelopment analysis (DEA). The framework provides the fastest available technique in the DEA literature to deal with big data. It is well known that as the number of decision-making units (DMUs) or the number of inputs–outputs increases, the size of DEA linear programming problems increases; and thus, the elapsed time to evaluate the performance of DMUs sharply increases. The framework selects a subsample of DMUs and identifies the set of all efficient DMUs. After that, users can apply DEA models with known efficient DMUs to evaluate the performance of inefficient DMUs or benchmark them. In this study, we elucidate their proposed method with transparent examples and illustrate how the framework is applied. Additional simulation exercises are designed to evaluate the performance of the framework in comparison with the performance of the two former methods: build hull (BH) and hierarchical decomposition (DH). The disadvantages of BH and HD are transparently demonstrated. A single computer with two different CPUs is used to run the methods. For the first time in the literature, we consider the cardinalities, 200,000, 500,000 and 1,000,000 DMUs.

Suggested Citation

  • Dariush Khezrimotlagh & Joe Zhu, 2020. "Data Envelopment Analysis and Big Data: Revisit with a Faster Method," International Series in Operations Research & Management Science, in: Vincent Charles & Juan Aparicio & Joe Zhu (ed.), Data Science and Productivity Analytics, chapter 0, pages 1-34, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-43384-0_1
    DOI: 10.1007/978-3-030-43384-0_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khezrimotlagh, Dariush, 2022. "Simulation designs for production frontiers," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1321-1334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-43384-0_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.