IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-19462-8_6.html
   My bibliography  Save this book chapter

Methods for Linearly Constrained Problems

In: Nonlinear Optimization

Author

Listed:
  • H. A. Eiselt

    (University of New Brunswick)

  • Carl-Louis Sandblom

    (Dalhousie University)

Abstract

In this and the following two chapters, several algorithms for solving nonlinear constrained optimization problems will be described. First the most special of all constrained nonlinear programming problems is considered, namely the quadratic programming problem for which the objective function is convex and quadratic and the constraints are linear. In the second section of the chapter methods for the more general problem of optimizing a differentiable convex function subject to linear constraints are discussed. Although every convex quadratic programming problem could be solved also by these more general methods, it is generally preferable to employ quadratic programming methods when possible. As a general principle it is advisable to use more specialized techniques for more specialized problems. Consequently, for a given problem one should select a method (covered in the previous, this, or the next two chapters) from a box as high up in Table 6.1 as possible. The third section considers problems in which the objective function is quadratic, but concave, a difficult case.

Suggested Citation

  • H. A. Eiselt & Carl-Louis Sandblom, 2019. "Methods for Linearly Constrained Problems," International Series in Operations Research & Management Science, in: Nonlinear Optimization, chapter 0, pages 195-242, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-19462-8_6
    DOI: 10.1007/978-3-030-19462-8_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-19462-8_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.