IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-19111-5_13.html
   My bibliography  Save this book chapter

The Mean-Value-at-Risk Median Problem on a Network with Random Demand Weights

In: Contributions to Location Analysis

Author

Listed:
  • Chunlin Xin

    (Beijing University of Chemical Technology)

  • Jiamin Wang

    (Long Island University Post)

Abstract

Dr. Zvi Drezner’s research career has touched on many areas of location analysis. We devote the first part of this chapter to summarizing Zvi’s vast contributions to the studies of the minimax and the maximum facility location problems. His relevant publications are grouped in terms of the characteristics of the problems investigated, including space, the number of facilities to locate, and completeness of information. In particular, we provide an overview of Zvi’s work in the deterministic planar minimax problems. The second part of the chapter is our own paper on a network median problem when demand weights are independent random variables. The objective of the model proposed is to locate a single facility so as to minimize the expected total demand-weighted distance subject to a constraint on the value-at-risk (VaR). The study integrates the expectation criterion with the VaR measure and links different median models with random demand weights. Methods are suggested to identify dominant points for the optimal solution. An algorithm is developed for solving the problem.

Suggested Citation

  • Chunlin Xin & Jiamin Wang, 2019. "The Mean-Value-at-Risk Median Problem on a Network with Random Demand Weights," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Contributions to Location Analysis, chapter 0, pages 321-341, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-19111-5_13
    DOI: 10.1007/978-3-030-19111-5_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-19111-5_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.