IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4939-3094-4_20.html
   My bibliography  Save this book chapter

Fuzzy Multi-Criteria Optimization: Possibilistic and Fuzzy/Stochastic Approaches

In: Multiple Criteria Decision Analysis

Author

Listed:
  • Masahiro Inuiguchi

    (Osaka University)

  • Kosuke Kato

    (Hiroshima Institute of Technology)

  • Hideki Katagiri

    (Hiroshima University)

Abstract

In this chapter, we review fuzzy multi-criteria optimization focusing on possibilistic treatments of objective functions with fuzzy coefficients and on interactive fuzzy stochastic multiple objective programming approaches. In the first part, treatments of objective functions with fuzzy coefficients dividing into single objective function case and multiple objective function case. In single objective function case, multi-criteria treatments, possibly and necessarily optimal solutions, and minimax regret solutions are described showing the relations to multi-criteria optimization. In multiple objective function case, possibly and necessarily efficient solutions are investigated. Their properties and possible and necessary efficiency tests are shown. As one of interactive fuzzy stochastic programming approaches, multiple objective programming problems with fuzzy random parameters are discussed. Possibilistic expectation and variance models are proposed through incorporation of possibilistic and stochastic programming approaches. Interactive algorithms for deriving a satisficing solution of a decision maker are shown.

Suggested Citation

  • Masahiro Inuiguchi & Kosuke Kato & Hideki Katagiri, 2016. "Fuzzy Multi-Criteria Optimization: Possibilistic and Fuzzy/Stochastic Approaches," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 851-902, Springer.
  • Handle: RePEc:spr:isochp:978-1-4939-3094-4_20
    DOI: 10.1007/978-1-4939-3094-4_20
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4939-3094-4_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.