IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-9399-0_5.html
   My bibliography  Save this book chapter

Stochastic Linear Programming

In: Linear and Multiobjective Programming with Fuzzy Stochastic Extensions

Author

Listed:
  • Masatoshi Sakawa

    (Hiroshima University)

  • Hitoshi Yano

    (Nagoya City University)

  • Ichiro Nishizaki

    (Hiroshima University)

Abstract

In this chapter, after overviewing elementary probability, two-stage programming and chance constrained programming are explained in detail. In two-stage programming, a shortage or an excess arising from the violation of the constraints is penalized, and then the expectation of the amount of the penalties for the constraint violation is minimized. In contrast, chance constrained programming admits random data variations and permits constraint violations up to specified probability limits, and its formulation is somewhat variable, including the expectation model, the variance model, the probability model, and the fractile model.

Suggested Citation

  • Masatoshi Sakawa & Hitoshi Yano & Ichiro Nishizaki, 2013. "Stochastic Linear Programming," International Series in Operations Research & Management Science, in: Linear and Multiobjective Programming with Fuzzy Stochastic Extensions, edition 127, chapter 0, pages 149-196, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-9399-0_5
    DOI: 10.1007/978-1-4614-9399-0_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avik Pradhan & M. P. Biswal, 2017. "Multi-choice probabilistic linear programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 54(1), pages 122-142, March.
    2. María Luisa Nolé & David Soler & Juan Luis Higuera-Trujillo & Carmen Llinares, 2022. "Optimization of the Cognitive Processes in a Virtual Classroom: A Multi-objective Integer Linear Programming Approach," Mathematics, MDPI, vol. 10(7), pages 1-20, April.
    3. Soumendra Nath Sanyal & Izabela Nielsen & Subrata Saha, 2020. "Multi-Objective Human Resource Allocation Approach for Sustainable Traffic Management," IJERPH, MDPI, vol. 17(7), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-9399-0_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.