IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-9056-2_13.html
   My bibliography  Save this book chapter

A Probabilistic Characterization of Allocation Performance in a Worker-Constrained Job Shop

In: Essays in Production, Project Planning and Scheduling

Author

Listed:
  • Benjamin J. Lobo

    (North Carolina State University)

  • T. J. Thoney

    (North Carolina State University)

  • Russell E. King

    (North Carolina State University)

  • James R. Wilson

    (North Carolina State University)

Abstract

We analyze a dual resource constrained (DRC) job shop in which both machines and workers are limited, and we seek to minimize L max, the maximum job lateness. An allocation of workers to machine groups is required to generate a schedule, and determining a schedule that minimizes L max is NP-hard. This chapter details a probabilistic method for evaluating the quality of a specific (but arbitrary) allocation in a given DRC job shop scheduling problem based on two recent articles by Lobo et al. (2013a) The first article Lobo et al. (2013b) describes a lower bound on L max given an allocation, and an algorithm to find an allocation yielding the smallest such lower bound, while the second article Lobo et al. (2013b) establishes criteria for verifying the optimality of an allocation. For situations where the optimality criteria are not satisfied, Lobo et al. (2013c) presents HSP, a heuristic search procedure to find allocations enabling the Virtual Factory (a heuristic scheduler developed by Hodgson et al. in 1998) to generate schedules with smaller L max than can be achieved with allocations yielding article 1’s final lower bound. From simulation replications of the given DRC job shop scheduling problem, we estimate the distribution of the difference between (a) the “best” (smallest) L max value achievable with a Virtual Factory–generated schedule, taken over all feasible allocations; and (b) the final lower bound of Lobo et al. (2013b). To evaluate the quality of a specific allocation for the given problem, we compute the difference between L max for the Virtual Factory–generated schedule based on the specific allocation, and the associated lower bound (b) for the problem; then we refer this difference to the estimated distribution to judge the likelihood that the specific allocation yields the Virtual Factory’s “best” schedule (a) for the given problem. We present several examples illustrating the usefulness of our approach, and summarize the lessons learned in this work.

Suggested Citation

  • Benjamin J. Lobo & T. J. Thoney & Russell E. King & James R. Wilson, 2014. "A Probabilistic Characterization of Allocation Performance in a Worker-Constrained Job Shop," International Series in Operations Research & Management Science, in: P. Simin Pulat & Subhash C. Sarin & Reha Uzsoy (ed.), Essays in Production, Project Planning and Scheduling, edition 127, chapter 13, pages 301-341, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-9056-2_13
    DOI: 10.1007/978-1-4614-9056-2_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-9056-2_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.