IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-9035-7_13.html
   My bibliography  Save this book chapter

Copula-Based Hedge Ratios for Renewable Power Generation

In: Handbook of Risk Management in Energy Production and Trading

Author

Listed:
  • Audun Nordtveit

    (Norwegian University of Science and Technology (NTNU))

  • Kim T. Watle

    (NTNU)

  • Stein-Erik Fleten

    (NTNU)

Abstract

The electricity price and production volume determine the revenue of a renewable electricity producer. Feed-in variations to power plants and high price volatility result in significant cash flow uncertainty. A copula-based Monte Carlo model is used to relate price and production volume and to find optimal hedge ratios through minimization of risk measures such as variance, hedge effectiveness, cash flow at risk, and conditional cash flow at risk. In our case study, all risk measures argue for an optimal hedge ratio between 35 and 60% of expected production. The highest risk reduction is achieved by the use of forward contracts with long time to maturity but at the expense of a low risk premium. Conversely, short-term futures and forwards only provide marginal risk reduction, but can yield attractive positive risk premiums. These findings underline the importance of distinguishing the use of derivative contracts for speculation and hedging purposes, through positions in short-term and long-term contracts, respectively.

Suggested Citation

  • Audun Nordtveit & Kim T. Watle & Stein-Erik Fleten, 2013. "Copula-Based Hedge Ratios for Renewable Power Generation," International Series in Operations Research & Management Science, in: Raimund M. Kovacevic & Georg Ch. Pflug & Maria Teresa Vespucci (ed.), Handbook of Risk Management in Energy Production and Trading, edition 127, chapter 0, pages 313-351, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-9035-7_13
    DOI: 10.1007/978-1-4614-9035-7_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-9035-7_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.