IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-5278-2_4.html
   My bibliography  Save this book chapter

Interdiction Models and Applications

In: Handbook of Operations Research for Homeland Security

Author

Listed:
  • Nedialko B. Dimitrov

    (Naval Postgraduate School)

  • David P. Morton

    (The University of Texas at Austin)

Abstract

Through interdiction models, we infer the vulnerabilities inherent in an operational system. This chapter presents four applications of interdiction modeling: (a) to delay an adversary’s development of a first nuclear weapon; (b) to understand vulnerabilities in an electric power system; (c) to locate sensors in a municipal water network; and (d) to secure a border against a nuclear smuggler. In each case, we detail and interpret the mathematical model and characterize insights gained from solving instances of the model. We point to special structures that sometimes arise in interdiction models and the associated implications for analyses. From these examples, themes emerge on how one should model, and defend against, an intelligent adversary.

Suggested Citation

  • Nedialko B. Dimitrov & David P. Morton, 2013. "Interdiction Models and Applications," International Series in Operations Research & Management Science, in: Jeffrey W. Herrmann (ed.), Handbook of Operations Research for Homeland Security, edition 127, chapter 0, pages 73-103, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-5278-2_4
    DOI: 10.1007/978-1-4614-5278-2_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongjia Song & Siqian Shen, 2016. "Risk-Averse Shortest Path Interdiction," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 527-539, August.
    2. Eghbal Rashidi & Hugh Medal & Aaron Hoskins, 2018. "An attacker‐defender model for analyzing the vulnerability of initial attack in wildfire suppression," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(2), pages 120-134, March.
    3. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle & R. Kevin Wood, 2018. "Assessing and Improving the Operational Resilience of a Large Highway Infrastructure System to Worst-Case Losses," Transportation Science, INFORMS, vol. 52(4), pages 1012-1034, August.
    4. Ketkov, Sergey S. & Prokopyev, Oleg A., 2020. "On greedy and strategic evaders in sequential interdiction settings with incomplete information," Omega, Elsevier, vol. 92(C).
    5. Stefano Berrone & Francesco Della Santa & Antonio Mastropietro & Sandra Pieraccini & Francesco Vaccarino, 2022. "Graph-Informed Neural Networks for Regressions on Graph-Structured Data," Mathematics, MDPI, vol. 10(5), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-5278-2_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.