IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-0769-0_5.html
   My bibliography  Save this book chapter

Convex Hulls of Algebraic Sets

In: Handbook on Semidefinite, Conic and Polynomial Optimization

Author

Listed:
  • João Gouveia

    (University of Washington
    University of Coimbra)

  • Rekha Thomas

    (University of Washington)

Abstract

This article describes a method to compute successive convex approximations of the convex hull of the solutions to a system of polynomial equations over the reals. The method relies on sums of squares of polynomials and the dual theory of moment matrices. The main feature of the technique is that all computations are done modulo the ideal generated by the polynomials defining the set to the convexified. This work was motivated by questions raised by Lovász concerning extensions of the theta body of a graph to arbitrary real algebraic varieties, and hence the relaxations described here are called theta bodies. The convexification process can be seen as an incarnation of Lasserre’s hierarchy of convex relaxations of a real semialgebraic set. When the defining ideal is real radical the results become especially nice. We provide several examples of the method and discuss convergence issues. Finite convergence, especially after the first step of the method, can be described explicitly for finite point sets.

Suggested Citation

  • João Gouveia & Rekha Thomas, 2012. "Convex Hulls of Algebraic Sets," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 113-138, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-0769-0_5
    DOI: 10.1007/978-1-4614-0769-0_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamza Fawzi & James Saunderson & Pablo A. Parrilo, 2017. "Equivariant Semidefinite Lifts of Regular Polygons," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 472-494, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-0769-0_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.