IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-0769-0_31.html
   My bibliography  Save this book chapter

Sparse PCA: Convex Relaxations, Algorithms and Applications

In: Handbook on Semidefinite, Conic and Polynomial Optimization

Author

Listed:
  • Youwei Zhang

    (EECS, University of California)

  • Alexandre d’Aspremont

    (ORFE, Princeton University)

  • Laurent El Ghaoui

    (EECS, University of California)

Abstract

Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This is known as sparse principal component analysis and has a wide array of applications in machine learning and engineering. Unfortunately, this problem is also combinatorially hard and we discuss convex relaxation techniques that efficiently produce good approximate solutions. We then describe several algorithms solving these relaxations as well as greedy algorithms that iteratively improve the solution quality. Finally, we illustrate sparse PCA in several applications, ranging from senate voting and finance to news data.

Suggested Citation

  • Youwei Zhang & Alexandre d’Aspremont & Laurent El Ghaoui, 2012. "Sparse PCA: Convex Relaxations, Algorithms and Applications," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 915-940, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-0769-0_31
    DOI: 10.1007/978-1-4614-0769-0_31
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-0769-0_31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.