IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-0769-0_25.html
   My bibliography  Save this book chapter

On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0

In: Handbook on Semidefinite, Conic and Polynomial Optimization

Author

Listed:
  • Kim-Chuan Toh

    (National University of Singapore)

  • Michael J. Todd

    (Cornell University)

  • Reha H. Tütüncü

    (Quantitative Investment Strategies, Goldman Sachs Asset Management)

Abstract

This software is designed to solve primal and dual semidefinite-quadratic-linear conic programming problems (known as SQLP problems) whose constraint conic is a product of semidefinite conics, second-order conics, nonnegative orthants and Euclidean spaces, and whose objective function is the sum of linear functions and log-barrier terms associated with the constraint conics. This includes the special case of determinant maximization problems with linear matrix inequalities. It employs an infeasible primal-dual predictor-corrector path-following method, with either the HKM or the NT search direction. The basic code is written in Matlab, but key subroutines in C are incorporated via Mex files. Routines are provided to read in problems in either SDPA or SeDuMi format. Sparsity and block diagonal structure are exploited. We also exploit low-rank structures in the constraint matrices associated with the semidefinite blocks if such structures are explicitly given. To help the users in using our software, we also include some examples to illustrate the coding of problem data for our solver. Various techniques to improve the efficiency and robustness of the main solver are incorporated. For example, step-lengths associated with semidefinite conics are calculated via the Lanczos method. The current version also implements algorithms for solving a 3-parameter homogeneous self-dual model of the primal and dual SQLP problems. Routines are also provided to determine whether the primal and dual feasible regions of a given SQLP have empty interiors. Numerical experiments show that this general-purpose code can solve more than 80% of a total of about 430 test problems to an accuracy of at least 10− 6 in relative duality gap and infeasibilities.

Suggested Citation

  • Kim-Chuan Toh & Michael J. Todd & Reha H. Tütüncü, 2012. "On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 715-754, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-0769-0_25
    DOI: 10.1007/978-1-4614-0769-0_25
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kurt M. Anstreicher, 2018. "Maximum-entropy sampling and the Boolean quadric polytope," Journal of Global Optimization, Springer, vol. 72(4), pages 603-618, December.
    2. Sungwoo Park & Dianne P. O’Leary, 2015. "A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 558-571, August.
    3. Dawen Yan & Xiaohui Zhang & Mingzheng Wang, 2021. "A robust bank asset allocation model integrating credit-rating migration risk and capital adequacy ratio regulations," Annals of Operations Research, Springer, vol. 299(1), pages 659-710, April.
    4. Kristijan Cafuta, 2019. "Sums of Hermitian squares decomposition of non-commutative polynomials in non-symmetric variables using NCSOStools," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 397-413, June.
    5. Kurt M. Anstreicher, 2020. "Efficient Solution of Maximum-Entropy Sampling Problems," Operations Research, INFORMS, vol. 68(6), pages 1826-1835, November.
    6. He, Qie & Zhang, Xiaochen & Nip, Kameng, 2017. "Speed optimization over a path with heterogeneous arc costs," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 198-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-0769-0_25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.