IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-0769-0_20.html
   My bibliography  Save this book chapter

Projection Methods in Conic Optimization

In: Handbook on Semidefinite, Conic and Polynomial Optimization

Author

Listed:
  • Didier Henrion

    (CNRS, LAAS, Toulouse
    Czech Technical University in Prague)

  • Jérôme Malick

    (CNRS, LJK, Grenoble, INRIA)

Abstract

There exist efficient algorithms to project a point onto the intersection of a convex conic and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called regularization algorithms for linear conic optimization, and applications in polynomial optimization. This is a presentation of the material of several recent research articles; we aim here at clarifying the ideas, presenting them in a general framework, and pointing out important techniques.

Suggested Citation

  • Didier Henrion & Jérôme Malick, 2012. "Projection Methods in Conic Optimization," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 565-600, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-0769-0_20
    DOI: 10.1007/978-1-4614-0769-0_20
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxim Bouev & Ilia Manaev & Aleksei Minabutdinov, 2013. "Finding the Nearest Valid Covariance Matrix: An FX Market Case," EUSP Department of Economics Working Paper Series Ec-07/13, European University at St. Petersburg, Department of Economics.
    2. Goran Banjac & Paul Goulart & Bartolomeo Stellato & Stephen Boyd, 2019. "Infeasibility Detection in the Alternating Direction Method of Multipliers for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 490-519, November.
    3. Aleksei Minabutdinov & Ilia Manaev & Maxim Bouev, 2014. "Finding The Nearest Valid Covariance Matrix: A Fx Market Case," HSE Working papers WP BRP 32/FE/2014, National Research University Higher School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-0769-0_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.