IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-0769-0_19.html
   My bibliography  Save this book chapter

Block Coordinate Descent Methods for Semidefinite Programming

In: Handbook on Semidefinite, Conic and Polynomial Optimization

Author

Listed:
  • Zaiwen Wen

    (Shanghai Jiaotong University)

  • Donald Goldfarb

    (Columbia University)

  • Katya Scheinberg

    (Lehigh University)

Abstract

We consider in this chapter block coordinate descent (BCD) methods for solving semidefinite programming (SDP) problems. These methods are based on sequentially minimizing the SDP problem’s objective function over blocks of variables corresponding to the elements of a single row (and column) of the positive semidefinite matrix X; hence, we will also refer to these methods as row-by-row (RBR) methods. Using properties of the (generalized) Schur complement with respect to the remaining fixed (n − 1)-dimensional principal submatrix of X, the positive semidefiniteness constraint on X reduces to a simple second-order cone constraint. It is well known that without certain safeguards, BCD methods cannot be guaranteed to converge in the presence of general constraints. Hence, to handle linear equality constraints, the methods that we describe here use an augmented Lagrangian approach. Since BCD methods are first-order methods, they are likely to work well only if each subproblem minimization can be performed very efficiently. Fortunately, this is the case for several important SDP problems, including the maxcut SDP relaxation and the minimum nuclear norm matrix completion problem, since closed-form solutions for the BCD subproblems that arise in these cases are available. We also describe how BCD can be applied to solve the sparse inverse covariance estimation problem by considering a dual formulation of this problem. The BCD approach is further generalized by using a rank-two update so that the coordinates can be changed in more than one row and column at each iteration. Finally, numerical results on the maxcut SDP relaxation and matrix completion problems are presented to demonstrate the robustness and efficiency of the BCD approach, especially if only moderately accurate solutions are desired.

Suggested Citation

  • Zaiwen Wen & Donald Goldfarb & Katya Scheinberg, 2012. "Block Coordinate Descent Methods for Semidefinite Programming," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 533-564, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-0769-0_19
    DOI: 10.1007/978-1-4614-0769-0_19
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-0769-0_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.