IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4419-8191-2_16.html
   My bibliography  Save this book chapter

Model Predictive Control in Semiconductor Supply Chain Operations

In: Planning Production and Inventories in the Extended Enterprise

Author

Listed:
  • Karl Kempf

    (Intel Corporation)

  • Kirk Smith
  • Jay Schwartz
  • Martin Braun

Abstract

Maintaining agility in a multi-echelon multi-product multi-geography supply chain with long and variable manufacturing lead times, stochastic product yields, and uncertain demand is a difficult goal to achieve. The approach advocated here is based on a practical application of control theory that includes a model of the system being controlled, feedback from previous results, feed-forward based on demand forecasts, and optimization of both the financial results and the control actions applied to achieve them. This Model Predictive Control (MPC) approach has been employed in the continuous-flow process industry for many years, and has been independently suggested for supply chains by a number of academic research teams. This chapter describes a large-scale application of the approach in the semiconductor industry.

Suggested Citation

  • Karl Kempf & Kirk Smith & Jay Schwartz & Martin Braun, 2011. "Model Predictive Control in Semiconductor Supply Chain Operations," International Series in Operations Research & Management Science, in: Karl G Kempf & Pınar Keskinocak & Reha Uzsoy (ed.), Planning Production and Inventories in the Extended Enterprise, chapter 0, pages 403-428, Springer.
  • Handle: RePEc:spr:isochp:978-1-4419-8191-2_16
    DOI: 10.1007/978-1-4419-8191-2_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yenming J. & Sheu, Jiuh-Biing & Lirn, Taih-Cherng, 2012. "Fault tolerance modeling for an e-waste recycling supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 897-906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4419-8191-2_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.