IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4419-6512-7_4.html
   My bibliography  Save this book chapter

Time Series Analysis

In: Supply Chain Engineering

Author

Listed:
  • Marc Goetschalckx

    (Georgia Institute of Technology)

Abstract

Recall that in the previous chapter objective or quantitative forecasting methods were defined as forecasting methods that rely on a formalized underlying model to make predictions. They are further divided into time series and causal methods. Time series analysis is a forecasting method based on the fundamental assumption that future estimates are based on prior, historical values of the same variable. This implies that the historical pattern exhibited by the variable to be forecasted will extend into the future. In addition, it is implicitly assumed that historical data are available. The only independent variable in a forecasting model based on time series analysis is the time period. Time series forecasting methods are mostly used to forecast variables for the short to intermediate term. As such, time series methods are some of the forecasting techniques most often used by logisticians and are developed in further detail in this chapter.

Suggested Citation

  • Marc Goetschalckx, 2011. "Time Series Analysis," International Series in Operations Research & Management Science, in: Supply Chain Engineering, chapter 0, pages 75-126, Springer.
  • Handle: RePEc:spr:isochp:978-1-4419-6512-7_4
    DOI: 10.1007/978-1-4419-6512-7_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4419-6512-7_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.