IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4419-6472-4_12.html
   My bibliography  Save this book chapter

Queueing Networks with Gaussian Inputs

In: Queueing Networks

Author

Listed:
  • Michel Mandjes

    (University of Amsterdam)

Abstract

This chapter analyzes queueing systems fed by Gaussian inputs. The analysis is of an asymptotic nature, in that the number of sources is assumed large, where link bandwidth and buffer space are scaled accordingly. Relying on powerful largedeviation techniques (in particular Schilder’s theorem), we identify the exponential decay rate of the overflow for the single queue. In addition we establish a number of appealing results (duality between decay rate and variance function; convexity of buffer/bandwidth trade-off curve). Then we extend the result to the tandem setting; a lower bound on the decay rate is found, which is proven to be ‘tight’ under specificconditions. Also approximations for the overflow probability are presented. The lastpart of the chapter is devoted to priority systems.

Suggested Citation

  • Michel Mandjes, 2011. "Queueing Networks with Gaussian Inputs," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. Dijk (ed.), Queueing Networks, chapter 12, pages 531-560, Springer.
  • Handle: RePEc:spr:isochp:978-1-4419-6472-4_12
    DOI: 10.1007/978-1-4419-6472-4_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongshuai Dai, 2022. "Tandem fluid queue with long-range dependent inputs: sticky behaviour and heavy traffic approximation," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 165-196, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4419-6472-4_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.