IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-89014-2_7.html
   My bibliography  Save this book chapter

Overcoming Preconceptions and Confirmation Biases Using Data Mining

In: Risk Analysis of Complex and Uncertain Systems

Author

Listed:
  • Louis Anthony Cox

    (Cox Associates)

Abstract

Data-mining methods such as classification tree analysis, conditional independence tests, and causal graphs can be used to discover possible causal relations in data sets, even if the relations are unknown a priori and involve nonlinearities and high-order interactions. Chapter 6 showed that information theory provided one possible common framework and set of principles for applying these methods to support causal inferences. This chapter examines how to apply these methods and related statistical techniques (such as Bayesian model averaging) to empirically test preexisting causal hypotheses, either supporting them by showing that they are consistent with data, or refuting them by showing that they are not. In the latter case, data-mining and modeling methods can also suggest improved causal hypotheses.

Suggested Citation

  • Louis Anthony Cox, 2009. "Overcoming Preconceptions and Confirmation Biases Using Data Mining," International Series in Operations Research & Management Science, in: Risk Analysis of Complex and Uncertain Systems, chapter 0, pages 179-202, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-89014-2_7
    DOI: 10.1007/978-0-387-89014-2_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-89014-2_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.