IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-79934-6_3.html
   My bibliography  Save this book chapter

Risk Management in Value Networks

In: Supply Chain Risk

Author

Listed:
  • Jukka Hallikas

    (Lappeenranta University of Technology)

  • Jari Varis

    (Lappeenranta University of Technology)

Abstract

One of the most challenging issues in the anticipation of risks in the business environment is to understand the dynamics of industry change and to recognize the relevant indicators. In large companies, different kinds of business and market intelligence systems and departments may collect great amounts of data and indicators related to the possible changes, but the difficulty lies in the interpretation of this data, and making sound decisions based on these indicators. It has been noted that the ability to anticipate where lucrative opportunities are likely to arise distinguishes top-performing firms from ordinary companies (Fine 1996). Marketing and technological forecasting capabilities are thus critical, especially for companies which are active in turbulent, high-technology markets. On the other side of the coin, risk and uncertainty are inherent in the hoped-for windows of opportunity, and forecasting ability is a critical capability in companies (Fine 1996). “Fortune favours the prepared firm” as Cohen and Levinthal (1994 p 1) have pointed out. The primary contribution of this chapter is to illustrate different approaches to risk management in value networks. We present different theoretical backgrounds for analyzing networks and illustrate some examples of the analyses that can be applied to support risk management at the network level.

Suggested Citation

  • Jukka Hallikas & Jari Varis, 2009. "Risk Management in Value Networks," International Series in Operations Research & Management Science, in: George A. Zsidisin & Bob Ritchie (ed.), Supply Chain Risk, chapter 3, pages 35-52, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-79934-6_3
    DOI: 10.1007/978-0-387-79934-6_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyuan Zhang & Jiayao Li & Frederick Benaben, 2022. "A Simulation Framework Dedicated to Characterizing Risks and Cascading Effects in Collaborative Networks," Post-Print hal-03775883, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-79934-6_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.