IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-33768-5_11.html
   My bibliography  Save this book chapter

Population Learning Algorithm for the Resource-Constrained Project Scheduling

In: Perspectives in Modern Project Scheduling

Author

Listed:
  • Piotr Jedrzejowicz

    (Gdynia Maritime University)

  • Ewa Ratajczak

    (Gdynia Maritime University)

Abstract

The paper proposes applying the population-learning algorithm to solving both the single-mode and the multi-mode resource-constrained pro-ject scheduling problems (denoted as RCPSP and MRCPSP, respectively) with makespan minimization as an objective function. The paper contains problem formulation and a description of the proposed implementation of the population learning algorithm (PLA). To validate the approach a computational experiment has been carried out. It has involved 1440 instances of the RCPSP and 3842 instances of the MRCPSP obtained from the available benchmark data sets. Results of the experiment show that the proposed PLA implementation is an effective tool for solving the resource-constrained project scheduling problems. In case of the RCPSP instances the algorithm in a single run limited to 50000 solutions generated has produced results close to the results of the best known algorithms as compared with average deviation from critical path. In case of the MRCPSP instances the proposed algorithm in a single run has produced solutions with mean relative error value below 1.6% as compared with optimal or best known solutions for benchmark problems.

Suggested Citation

  • Piotr Jedrzejowicz & Ewa Ratajczak, 2006. "Population Learning Algorithm for the Resource-Constrained Project Scheduling," International Series in Operations Research & Management Science, in: Joanna Józefowska & Jan Weglarz (ed.), Perspectives in Modern Project Scheduling, chapter 0, pages 275-296, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-33768-5_11
    DOI: 10.1007/978-0-387-33768-5_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T Wauters & K Verbeeck & G Vanden Berghe & P De Causmaecker, 2011. "Learning agents for the multi-mode project scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 281-290, February.
    2. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-33768-5_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.