IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-33768-5_10.html
   My bibliography  Save this book chapter

A Hybrid Genetic Algorithm Based on Intelligent Encoding for Project Scheduling

In: Perspectives in Modern Project Scheduling

Author

Listed:
  • Javier Alcaraz

    (Universidad Politécnica de Valencia)

  • Concepción Maroto

    (Universidad Politécnica de Valencia)

Abstract

In the last few years several heuristic, metaheuristic and hybrid techniques have been developed to solve the Resource-Constrained Project Scheduling Problem (RCPSP). Most of them use the standard activity list representation, given that it seems to perform best in solving the RCPSP independently of the paradigm employed (genetic algorithms, tabu search, simulated annealing, ...). However, we have designed an innovative representation, one which has not been used before and which includes a lot of problem-specific knowledge. Based on that representation we have developed a new competitive and robust hybrid genetic algorithm, which uses genetic operators and an improvement mechanism specially designed to work on that representation and exploit, in a very efficient way, the information contained in it. We have compared this algorithm with the best algorithms published so far, using the standard benchmark of PSPLIB. The results show the excellent performance of our algorithm.

Suggested Citation

  • Javier Alcaraz & Concepción Maroto, 2006. "A Hybrid Genetic Algorithm Based on Intelligent Encoding for Project Scheduling," International Series in Operations Research & Management Science, in: Joanna Józefowska & Jan Weglarz (ed.), Perspectives in Modern Project Scheduling, chapter 0, pages 249-274, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-33768-5_10
    DOI: 10.1007/978-0-387-33768-5_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardo F. Almeida & Isabel Correia & Francisco Saldanha-da-Gama, 2018. "A biased random-key genetic algorithm for the project scheduling problem with flexible resources," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 283-308, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-33768-5_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.